WNE Linear Algebra Resit Exam Series B

$24 \ {\rm Feburary} \ 2024$

Please use separate sheets for different problems. Please use single sheet for all questions. Give reasons to your answers. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and the series.

Each problem is worth 10 marks. Each question is worth 4 marks.

Problems

Problem 1.

Let $V = \lim((1, 1, -1, -4), (1, 2, -1, -7), (-3, 2, 3, -3))$ be a subspace of \mathbb{R}^4 .

- a) find a basis \mathcal{A} of the subspace V and the dimension of V,
- b) find coordinates of vector v = (3, 1, -3, -6) relative to \mathcal{A} .

Problem 2.

Let $V \subset \mathbb{R}^4$ be a subspace given by the homogeneous system of linear equations

$$\begin{cases} x_1 + x_2 + x_4 = 0\\ 2x_1 + 3x_2 + 3x_3 + 4x_4 = 0 \end{cases}$$

a) find a basis \mathcal{A} and the dimension of the subspace V,

b) complete basis \mathcal{A} to a basis of \mathbb{R}^4 .

Problem 3.

 Let

$$A = \begin{bmatrix} 3 & 2 & 1 \\ 5 & 4 & 2 \\ 0 & t & 1 \end{bmatrix}.$$

a) find all $t \in \mathbb{R}$ such that matrix $(A^{\intercal})^8$ is invertible,

b) for t = 1 find A^{-1} .

Problem 4.

Let $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ be an endomorphism given by the formula

$$\varphi((x_1, x_2, x_3)) = (x_1 + 2x_2, 2x_1 + 4x_2, -x_3).$$

- a) find eigenvalues and bases of the corresponding eigenspaces of φ ,
- b) is endomorphism φ diagonalizable? is matrix $M(\varphi)_{st}^{st}$ positive semidefinite? Justify your answers.

Problem 5.

Let

$$V = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + 3x_2 + 2x_3 = 0 \},\$$

be a subspace of \mathbb{R}^3 .

- a) find an orthonormal basis of V and an orthonormal basis of V^{\perp} ,
- b) find the formula of the orthogonal projection onto V^{\perp} .

Problem 6.

Consider the following linear programming problem $2x_2 + x_3 + x_4 \rightarrow \min$ in the standard form with constraints

$$\begin{cases} x_1 + x_3 = 5 \\ x_2 + x_4 = 1 \\ x_1 + 5x_2 + x_5 = 10 \end{cases} \text{ and } x_i \ge 0 \text{ for } i = 1, \dots, 5.$$

- a) which of the sets $\mathcal{B}_1 = \{3, 4, 5\}$, $\mathcal{B}_2 = \{1, 3, 4\}$ is basic feasible? write the corresponding basic solutions for both sets,
- b) solve the linear programming problem using simplex method. Start from the basic feasible set taken from part a).

Questions

Question 1.

Let $A, B \in M(2 \times 2; \mathbb{R})$ be two symmetric matrices, that is $A^{\intercal} = A, B^{\intercal} = B$. If A is positive definite and B is negative definite, does it follow that A + B is indefinite?

Solution 1.

No, it does not.

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Question 2.

Let $A \in M(2 \times 2; \mathbb{R})$ be a matrix. Does it follow that

$$A = -A^{\mathsf{T}} \quad \Longleftrightarrow \quad (A + A^{\mathsf{T}})^2 = 0.$$

Solution 2.

Yes, it does. $(\Longrightarrow) \text{ trivial}$ $(\Longleftrightarrow) \text{ Let } A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}. \text{ Then}$ $(A + A^{\intercal})^2 = \begin{bmatrix} (c+b)^2 + 4a^2 & 2(c+b)d + 2a(c+b) \\ 2(c+b)d + 2a(c+b) & 4d^2 + (c+b)^2 \end{bmatrix}.$

In particular,

$$(c+b)^{2} + 4a^{2} = 4d^{2} + (c+b)^{2} = 0$$

therefore a = d = 0 and c = -b. Note that

$$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}^2 = 0 \quad \text{but} \quad \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq 0.$$

Question 3.

If a + b + c = 0 where $a, b, c \in \mathbb{R}$, does it follow that

$$\det \begin{bmatrix} a^2 & ab & ac \\ b^2 & bc & ab \\ c^2 & ac & bc \end{bmatrix} = 0.$$

Solution 3.

Yes, it does.

$$\det \begin{bmatrix} a^2 & ab & ac \\ b^2 & bc & ab \\ c^2 & ac & bc \end{bmatrix} = abc \det \begin{bmatrix} a & c & b \\ b & a & c \\ c & b & a \end{bmatrix} = \det \begin{bmatrix} a+b+c & a+b+c & a+b+c \\ b & a & c \\ c & b & a \end{bmatrix} = 0.$$

Question 4.

Let $A, B \in M(2 \times 2; \mathbb{R})$. Assume that A and B are simultaneously diagonalizable, that is there exists an invertible matrix $C \in M(2 \times 2; \mathbb{R})$ such that matrices $C^{-1}AC$ and $C^{-1}BC$ are diagonal. Does it follow that AB = BA?

Solution 4.

Yes, it does. Since diagonal matrices commute

$$C^{-1}ACC^{-1}BC = C^{-1}BCC^{-1}AC \implies AB = BA.$$

Question 5.

Let $A, B \in M(2 \times 2; \mathbb{R})$ be two matrices. If A and B are not invertible, does it follow that A + B is not invertible?

Solution 5.

No, it does not.

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$